This project implements a simple Retrieval-Augmented Generation (RAG) system using the following stack:
It allows users to query a document collection (e.g., IRB policies and procedures) using natural language and receive context-aware responses from a local language model served through Ollama.
rag_project/
├── .env # Environment variables (e.g., Pinecone keys)
├── app.py # Main Streamlit app that ties everything together
├── logger.py # Custom logging logic
├── exceptions.py # Custom exception handling
├── requirements.txt # Python dependencies
├── README.md # Project documentation
├── ingestion.py # Logic for document loading and embedding
├── query.py # Logic for answering user queries